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Abstract

We present an optimization procedure for minimizing the error in
the numerical solution of a partial differential equations by modifying
the computational grid. We construct exact solutions by adjusting the
forcing and use the exact error in the numerical solution as objective
function. Chimera (overset) grids are used to discretize the domain
and a robust genetic algorithm is used to optimize the grid. Numerical
examples for Poisson’s equation in a domain exterior to a wing-like
object demonstrate that the error in the numerical solution can be
reduced significantly by using the proposed method.

1 Introduction

The generation of computational grids for complex geometries can be viewed
as an optimization problem where the objective function is the grid quality,
and the design variables are the input parameters to the grid generator. A
computational grid is used to numerically solve a partial differential equation



(PDE) with a field discretization method and we call a grid optimal when it
minimizes the numerical error in the solution of the PDE. However, the op-
timality depends on the PDE, the forcing, and the discretization method. In
the current paper, we apply the “twilight-zone” forcing technique [5] to con-
struct exact solutions of the same PDE on the same computational domain,
but with a modified forcing function. Since the exact solution is known, the
error can be calculated exactly and can be used as the objective function.
In comparison, standard grid quality measures are based on metrics of the
grid, such as cell skewness, stretching ratio between neighboring cells, or cell
aspect ratio. Even though these measures are related to the truncation error
in the discretization of the PDE, it is very difficult to accurately relate these
measures to the actual error when the PDE is computed on the grid.

To evaluate the objective function we first need to construct a grid, com-
pute a numerical solution to a PDE on that grid, and then evaluate the error
in the numerical solution. Since it is computationally expensive to compute
the numerical solution of a PDE, it is desirable to use an optimization al-
gorithm which is able to find one very good grid in as few evaluations of
the objective function as possible. Furthermore, it is hard to ensure that a
grid can be constructed for all combinations of input parameters to the grid
generator. And if a grid can not be constructed, the error in the numerical
solution of the PDE can not be evaluated. At these points in parameter
space, the objective function is defined to equal a large constant. This makes
the objective function unsmooth, and the optimization algorithm must be
able to handle this property.

In this report we use genetic algorithms to optimize the grids. Genetic
(or evolutionary) algorithms are based on theories from natural selection [6].
Genetic algorithms are characterized by their ability to explore unknown re-
gions of parameter space while exploiting knowledge of the regions searched
so far. Other important advantages are their ability to find global optima
even when the search space is unsmooth and the objective function is not
differentiable. These properties make genetic algorithms more robust than
traditional methods, such as steepest decent, which, for example, would run
into difficulties at points in parameter space where the grid can not be con-
structed.

Genetic algorithms have apparently not been used much for grid opti-
mization. Bykat [2] reported a genetic algorithm for optimizing unstructured
grids. However, in his work the grid quality was estimated solely from metric
properties, so it is rather different from ours.
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Figure 1: A region with two airfoils discretized by the Chimera technique. The green and
red grids are body fitted and resolve the regions near the two airfoils. The remainder of
the computational domain is discretized on a Cartesian background grid.

In the present work, we use Chimera grids [10] to handle complex ge-
ometries. In this technique, complicated computational domains are decom-
posed into overlapping sub-domains where each sub-domain is discretized on
a structured grid. An example of a Chimera grid is shown in figure 1.

In § 2, we give an overview of the grid generator and describe the param-
eters governing the grid generation. Section 3 contains a specification of the
optimization problem for Poisson’s equation with Dirichlet conditions and
in section 4, we give an overview of genetic algorithms. Finally, in § 5, we
present results showing that the error in a numerical solution can be reduced
significantly by optimizing the grid using the proposed method.

2 Generating Chimera grids

In the Chimera (or overlapping) grid technique [10], complicated compu-
tational domains are decomposed into overlapping sub-domains where each
sub-domain is discretized on a structured grid. For example, in the grid
shown in Figure 1, the regions near the wings are discretized on body fit-



ted curvilinear grids while the remainder of the domain is discretized on a
Cartesian background grid, in which the body fitted grids can cut holes. The
solution at the outer boundaries of the wing grids is connected to the solution
on the Cartesian background grid through interpolation relations. Similarly,
the solution at the inner, stair-stepped, boundary of the Cartesian grid is
interpolated from the overlapping wing-grid.

For the generation of Chimera grids, we use the program ogen which is
included in the Overture framework [1]. In ogen, there are several different
component grid generation algorithms. We will focus on the Cartesian and
hyperbolic grid generators, since they are the most important building blocks
for making grids around general geometries. Cartesian grids are most often
used to generate background grids, whereas hyperbolic grids are used to make
body fitted grids near curved boundaries.

While it is trivial to generate a Cartesian grid, it is more involved to
generate a hyperbolic grid. We view the grid as a mapping « = x(r) from a
unit square in parameter space 7 = (r,s)’ to physical space z = (z,y)?. If
the grid has N, x N, grid points, the points in parameter space are simply
ri=(G—1)/N, —1),i=12...,Noand s; = (j — 1)/(N, — 1), j =
1,2,..., N,. The grid points in physical space are given by x;; = (r;, s;).

The hyperbolic grid starts from a curve xy(r) and this is taken to be the
first grid line in the s-direction:

x(riy,s1) =xo(ry), i=1,2,...,N,.

From this curve, the grid is grown in an advancing front fashion; we will
call the most recently generated grid line the front. The hyperbolic grid
generator in ogen implements a combination of the techniques developed by
Chan and Steger [4], Chan and Buning [3], and Sethian [9]. In essence, the
grid is generated by solving the hyperbolic-parabolic PDE:

z, = S(r,s)n + v(Ar)’z,,, (1)

Here, n is the unit normal of the front, S(r, s) is the speed function, v is the
dissipation coefficient, and Ar = 1/(N, —1) is the step size in the r-direction.
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The speed function controls the cell size according to
Aai,j
Aa;
Kij = ©or(1i 55) - (T3, 55) /@0 (73, 55)
n(ri,55) = (=yr (riy 55), 2o (ris 55))" /|2 (75, 55))|

Aa;j = |2, (ri, 55)]-

a—1

S(ri,s;) =d (1- GHi,j)aj_lma (2)

The function Ag; ; is obtained by smoothing Aa;; by applying a Jacobi
scheme Nyt times. The idea behind the speed function is to grow the
front faster where the grid size is smaller than the (local) average grid size,
and where the front is concave. The stretching of the grid in the s-direction is
controlled by the geometric stretching factor .. Since the step size is adjusted
for the local step size and for curvature, d will only approximately equal
the thickness of the grid in the s-direction. To avoid stability restrictions
on the step size in s, (1) is integrated implicitly with a mix of the Euler-
Backwards and Crank-Nicholson schemes. The implicit mixing coefficient
I, 0.5 <1, <1, is a parameter that can be set by the user where [,, = 1
gives Euler-Backwards and I,,, = 0.5 corresponds to Crank-Nicholson. After
the PDE has been advanced one step in s, the preliminary grid line &(r, s;+1)
is modified to redistribute the grid points in the r-direction according to the
arclength and curvature along the grid line. The idea is to put more grid
points where the arclength varies quickly and the curvature is large. A new
parameter £(r) is computed by equidistributing a weight function w(r):

1 &) 1
r= —/ w(r)dr, C= / w(r) dr,
C Jo 0

w(r) = vs|@(r)] + vek(r),

where 7, and ~, are user defined. The reparametrized grid line z”(r) =
Z(&(r), sj+1) is then used to compute the final grid line:

(1, sj41) = (1 = %) &(r, sj41) + 7e(r). (3)

The coefficient 7, is called the equidistribution weight, and is specified by
the user. The procedure can now be repeated to compute the remaining grid
lines.

In summary, the user can change the following 11 parameters in the hy-
perbolic grid generator: the number of grid points NV, and N, the number



of smoothing steps Nymootn for computing Aa, the geometric growth ratio
«, the distance to march d, the curvature speed coefficient €, the dissipation
coefficient v, the implicit mixing coefficient I,,, and the redistribution coef-
ficients s, vk, and .. Even though all parameters have reasonable default
values, it is clearly a non-trivial task to choose the parameter values that
yield the best grid.

3 The Optimization problem

In this work, we aim to minimize the error in the solution of a two-dimensional
Poisson equation with Dirichlet boundary conditions. Let €2 C R? be a do-
main with a sufficiently smooth boundary 0€2, and let f and g be sufficiently
smooth functions, where f is defined in €2 and g on 0€2. We consider

A¢ = f, in Q, (4)
¢ = g, on 0N, (5)

For general domains €2 and general forcing functions f and g, it is not pos-
sible to find the exact solution ¢, which is necessary to compute the error
in a numerical solution. To circumvent this difficulty, we will apply the
“twilight-zone” forcing method [5] to construct analytical solutions for par-
ticular choices of f and g, without making restrictions on the domain €2. In
this technique, a sufficiently differentiable function ®(x,y) is first selected.
The forcing functions in (4) and (5) are then chosen to be

f=A®D, inQ, (6)
g =: ®, on 0N. (7)

By construction, the exact solution of (4) and (5) is ¢(z,y) = ®(z,y). Hence,
it is possible to exactly evaluate the error in the numerical solution at all grid
points. Note that the same procedure applies to general PDEs, see [5] for
details.

Throughout this paper, we will use the function

®(z,y) = cos(mz) cos(my)

as exact solution. The Poisson problems are solved numerically using the
second order accurate centered finite difference technique available in the
Overture [1] library.
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As was described in the previous section, the construction of a Chimera
grid covering 2 is governed by various parameters that we collect in a pa-
rameter vector P = (py,po,...,pm)’. We will call the corresponding grid
G(P). Furthermore, let the numerical approximation of ¢ on the grid G(P)
be ¢p. Note that for most geometries there will be some parameter vectors
P where the grid generation algorithm fails to generate a valid Chimera grid.
Formally, this makes the error in the numerical solution ¢p undefined, but
for practical purposes, we define it to be a large constant e,,,, > 1. Hence,
we define the error in ¢p according to

e(P) = |® — ¢p|loo, if G(P) is valid, @)

Emaz otherwise.

The optimization problem can now be stated: Find the parameter vector
P corresponding to a Chimera grid G(P) covering €2 where the total number
of grid points N < Npaz, such that the error e(P) attains a minima. For
simplicity, the number of component grids in the Chimera grid as well as the
background grids will be kept constant during the optimization.

4 Genetic algorithms

Genetic algorithms have been used in various engineering applications [8] and
several books have been written on the subject [7], [6]. Here, we have used
one of the methods implemented in the library GAlib[11], which we outline
below.

A genetic algorithm strives to optimize an individual or group of individ-
uals with respect to an objective function. In our application, each individual
is a computational grid, and we want to optimize the grid to minimize the
error when solving a Poisson equation on the grid. The optimization is per-
formed in search space, which is the sub-domain of the parameter space that
describes the permissible values of the parameters. Each grid is uniquely de-
termined by the parameter vector P, which contains all input parameters to
the grid generator. Rather than moving from one point to another in search
space, genetic algorithms work with an evolving population of individuals
{P1,P,,...,Py}. A central concept in the algorithm is the fitness of an
individual. Since we aim at minimizing the error e(P), an individual with
a small error should have a higher fitness value than one with a large error.



We therefore define the fitness of an individual P to be

f(P) = —e(P) + Jnax, e(P;) + min, e(P;).
Hence, f(P) attains its maxima where e(P) is minimized, and vice versa.
Furthermore, f(P) > 0 since e(P) > 0.

The user provides the initial individual which is used to both generate
the initial population and define the search space by specifying how much
each parameter is allowed to change from the value in the initial individual.
In the current work, we allow each parameter to change up to 50%. The ge-
netic algorithm starts off by initializing a population by randomly disturbing
the parameters of the initial individual. The initial population constitutes
the first generation and the algorithm proceeds by evaluating the objective
function to obtain a fitness value for each individual. These values are used
by the reproduction operator to select the best individuals for reproduction.
From the fitness value, each individual is assigned a probability to be used
for reproduction, where the probability for individual ¢ is taken to be the
fitness fraction f(Pq)/E:f\;1 f(P;). This can be viewed as constructing a
roulette wheel with variable slot sizes, where the slot size is proportional to
the fitness fraction of each individual.

To select one parent, the roulette wheel selector is applied twice to pick
two candidates which then are processed by the tournament selector, which
picks the individual with the highest fitness value. The selection procedure
is repeated to pick a second parent. With a specified probability (usually
around 0.7), it is determined whether the parents should undergo crossover.
If this is not the case, the first and second child are simply taken to be
copies of the first and second parent, respectively. Otherwise, the parameter
vectors of the parents are mixed to produce the children. In this work, a
uniform crossover operator is used. Each parameter value is represented as
a 32 bit floating point number, and the crossover operator “flips a coin” for
each bit to decide whether the value of that bit in the first child should be
taken from the first or second parent. The value of that bit in the second
child is then taken from the other parent. After the children are produced,
their parameter vectors undergo mutation. Some mutation is important for
finding global optima, but the expectancy for mutation is kept relatively
low. For each parameter in the parameter vector, it is decided according to
a specified probability if that value should undergo mutation. In that case,
a new value is picked according to a Gaussian distribution centered around
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the current value of the parameter. The selection, crossover and mutation
steps are repeated until the desired number of children have been obtained.

In the following, we will focus on the steady state genetic algorithm. In
this method, a fraction of the the best individuals in the current generation
are kept together with the best children to form the next generation. This
fraction is called the replacement ratio. New generations evolve until a stop-
ping criteria is met. In this work, we simply stop after a specified number of
generations.

5 Numerical examples

In our application, each individual is represented by a command file that can
be read by the grid generator. Naturally, the command file contains more
information than the changeable parameters. In our implementation, the
parameters that are allowed to change are indicated by a comment on the
preceding line in the command file of the initial individual. It is not necessary
for the grid generator to succeed in generating a valid Chimera grid for the
initial individual, but the values for the parameters need to be close to those
of a valid Chimera grid.

In the present work, we use the implementations of the steady state ge-
netic algorithms provided by the library GAlib [11]. During our experiments,
we will set the replacement ratio to 0.5, the expectancy for crossover to be 0.7
and vary the expectancy for mutation between 0.01 and 0.5. Furthermore,
the size of the population will vary from 10 to 40 individuals and the number
of generations will vary from 10 to 40.

The genetic algorithm uses a random-number generator to perform many
operations and we use different seeds for each run. Note that this is the only
difference between the runs. To obtain statistical information on how the
parameters for the genetic algorithm should be chosen, we perform 5 runs for
each parameter setting. During the grid optimization, we keep Ngmoorn = 20
and [,, = 1.0, and allow the following 9 ogen parameters to change: «, v,
N,, N, €, Vs, Yk, Ve, and d. As was previously mentioned, the number of
grid lines is constrained to satisfy N, Ns; < Npaz, Where Ny, 18 the number
of grid points in the original grid.

As computational domain, we will use a wing-like profile in a rectangular
box. The original grid is presented in Figure 2 and the corresponding error
in the solution of the Poisson equation is shown in Figure 3. The max-norm
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Grid Error « v N, € Vs Vi Ye d
Original | 2.3-1072 | 1.2 0.05 241 0.1 1.0 1.0 0.1 0.25
P40-R2 | 1.74-1073 | 1.0052 0.03362 276 0.1087 1.282 0.5 0.05 0.125
P20-R1 | 1.74-1073 | 1.0067 0.05960 287 0.1131 1.278 1.5 0.05 0.125
P20-R4 | 1.76-107% | 1.0188 0.04330 361 0.0597 1.340 0.77 0.053 0.125
P20-R5 | 1.72-1073 | 1.0330 0.05567 361 0.05 1.266 0.5 0.061 0.125
P10-R3 | 1.72-1073 | 0.9991 0.06074 282 0.05 0.827 1.39 0.05 0.125

Table 1: Parameter settings for the original grid and some of the best optimized grids.
Grid Pxz-Ry refers to population size zz, run y, in Figure 5.

of the error on the initial grid is 2.3 x 102,

In our first numerical experiment, we vary the expectancy for mutation
between 0.01 and 0.5. A population of 30 individuals is evolved for 10 gen-
erations in all cases. The max-norm of the errors are reported in Figure 4.
Since the errors vary substantially between runs with the same mutation, it
is not obvious from this comparison what the best value for the mutation is.
However, it can be seen that all runs are able to reduce the error by almost
an order of magnitude, compared to the error in the original grid.

In a second experiment, we fix the expectancy for mutation to 0.1 and
vary the size of the population between 10 and 40, such that the number of
evaluations of the objective function is 400 for all cases. Hence, the number
of generations is taken to be 400 divided by the size of the population. The
results are presented in Figure 5. From these runs, it seems clear that the
sensitivity to the random number seed decreases as the size of the population
increases. The error levels for the biggest population (40 individuals) after
10 generations are only slightly higher than the best run using half the pop-
ulation size (20 individuals) but twice as many generations. However, the
worst run with 20 individuals is worse than the worst run with 40 individuals.
This indicates that a larger population is preferable, especially if only a few
different runs will be performed. The best individual for all three population
sizes had an error of around 1.75 x 1073, and we choose to look closer at the
resulting grid for run 2 with population size 40. In Figure 2, we show the
optimized grid, and the corresponding error is presented in Figure 6.

Finally, we compare the parameter settings in some of the best optimized
grids, see Table 1. It is interesting to see that some parameters («, 7. and
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Figure 2: The body fitted component grid in the original (top) and optimized (bottom)
Chimera grid. The optimized grid corresponds to run 2 with population size 40 and 10

generations.
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Figure 3: The error for the original Chimera grid. The maximum value is 2.3 x 1072.
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Figure 4: The error in max norm for five runs with the expectancy for mutation set to
0.01 (top left), 0.10 (top right), 0.20 (bottom left), and 0.50 (bottom right). Note that
only the best individual for each run is shown.



14

x10° Y10°
T T T T T

Figure 5: The error in max norm for five runs with the population size varying from 40
(top left), 20 (top right), and 10 (bottom). The number of generations was chosen to make
the total number of evaluations of the objective function equal 400. Note that only the
best individual for each run is shown.
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Figure 6: The error for the best Chimera grid corresponding to run 2 with population size
40 and 10 generations. The maximum value is 1.74 x 1073,
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d) have very similar values in all of these grids. Other parameters (e and )
appear to be almost redundant since they take very different values. The
remaining parameters (v, N,, ;) vary less, but still substantially enough
to indicate that the parameters could be improved further. Recall that all
parameters are allowed to change up to 50% from the original value. Most
noticeable seems to be that all cases have the width of the grid, d, set to the
minimum value (0.125). The same behavior is seen for the equidistribution
weight, 7., which is close to its minimum value (0.05) for all cases. Since we
are evaluating the error in Poisson’s equation, it is not surprising to see that
the geometric growth ratio, «, is close to 1.0 for all runs. Note that an unit
growth ratio corresponds to an unstretched grid.

6 Conclusions

Manual generation of grids for complex geometries can be a tedious task
that requires a significant amount of time and knowledge. To efficiently use
a grid generator, the user must have a thorough understanding of how all
parameters in the grid generation algorithm affect the resulting grid. We have
presented an optimization technique that automatically improves an initial
grid by using a genetic algorithm together with the construction of exact
solutions of PDE’s on general domains, which enables us to use the exact error
in the numerical solution as objective function. We have demonstrated that
the method is capable of improving a grid such that the error in the solution
of a Poisson equation is reduced by more than an order of magnitude. The
technique was demonstrated using finite difference method on overlapping
grid, but it should be applicable to other types of field discretization methods
and other types of computational grids.

We plan to extend the technique to minimize the error for other PDE’s
and compare the properties of the resulting grids. In particular, it would
be interesting to optimize the grid for a system of PDE’s, where there are
conflicting grid requirements from the different equations in the system. The
incompressible Navier-Stokes equations would be an example of such a sys-
tem, when there are boundary layers in the velocity, but not in the pressure.
Since the computation of the error in a numerical solution of a PDE is costly,
especially for three-dimensional problems, we also plan to explore parallel
computing techniques.
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